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Fundamentals of Microgravity Vibration Isolation

Outline:
• Motivation
• Dynamics of Systems
• Active Control Concepts
• Active Control Examples
• Modern Control Approaches
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Fundamentals of Microgravity Vibration Isolation

• The ambient spacecraft acceleration levels are often  
higher than allowable from a science perspective.
• To reduce the acceleration levels to an acceptably 
quiescent level requires vibration isolation.
• Either passive or active isolation can be used 
depending on the needs or requirements of a specific 
application.

Introduction
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What is Vibration Isolation?
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• Low Frequency Position Control Loop:
• Maintains Centering
• Allows quasi-steady accel estimation  
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Control Law
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• High Frequency Acceleration Control Loop:
• Cancels Inertial Motion of the Platform
• Allows “Good Vibrations”
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Transmissibility
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Attenuation Requirement 

Attenuation: the ratio of platform
motion to base motion
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To “follow” the base motion and prevent bumping at low frequencies, 
the isolation system must pass low frequency forces to the platform

Between 0.1 and 10 Hz, the attenuation must increase one order of
magnitude for every order of magnitude increase in frequency

Above 10 Hz, the attenuation must be 
greater than three orders of magnitude
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Single Degree Of Freedom (DOF) Example:
Spring-Mass-Damper

x0

x
isolated experiment 
acceleration

base acceleration

actFdistFxxkxxdxm +=−+−+ )0()0( &&&&Equation of motion:

Actuator

mass

Fdist

k d
Fact

The dynamic response of the mass to a base acceleration is a function of the 
system mass, stiffness, and damping.
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System Dynamics: Transmissibility

Transmissibility is the magnitude of the transfer function relating the 
acceleration (or position) of the mass to the base acceleration (or position).  The 
transmissibility specifies the attenuation of base motion as a function of 
frequency.  
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• Select spring stiffness, mass, and damping for attenuation
• Reduce break frequency by minimizing spring stiffness

Typically not desirable to increase isolated mass
• Select damping to trade between damped resonance and rate of 

attenuation
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Active Vibration Isolation

• Reduce the inertial motion of payload by sensing motion and 
applying forces to counter measured motion

• Active control can effectively change the system mass, 
stiffness, and damping as a function of frequency

• Whereas passive isolation only attenuates forces in passive 
elements, active control attenuates measured motion
• Only active control can mitigate payload response to 

payload-induced vibrations 
• Requires power, sensors, actuators, control electronics (analog 

and digital)
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Active Control Illustration

xin xout

Consider the transfer function from base position to mass displacement:

P =  ds + k
ms2 + ds + k P

Now measure the displacement and “feed it back” with gains (Ka, Kv, Kp) and 
a control law given by G = - Kas2 - Kvs - Kp

xin

G

xout
P xin xout

Pcl<==>

The closed loop transfer function becomes: 
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m x d x x k x x Fd is t Fa c t&& ( & & ) ( )+ − + − = +0 0

Equation of motion:

Active Isolation Example

Consider the control law:

The resulting closed loop
transmissibility is:

and the closed loop natural frequency and damping become:
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Recall the Spring-Mass-Damper Example



March 6, 2003 MEIT-2003 / Section 14 / Page 14

Fundamentals of Microgravity Vibration Isolation

Passive Isolation Active Isolation
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• Real systems aren’t simple one degree of freedom lumped masses with 
discrete springs and dampers. 
• Control system design is a function of system properties which typically 
aren’t well known. 

The two key control design issues are performance and 
robustness. 

•Performance:  how well is isolation achieved?
•Robustness: how well are uncertainties tolerated by the control system?

Active Control Concepts

However, it isn’t as easy as it seems --
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Robustness and Performance
of a closed loop system are 
always in opposition
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Key Control Issues

» Robustness to uncertainties:
» umbilical properties
» structural flexibility
» mass and inertia variations
» sensor & actuator dynamics

» Performance:
» base motion attenuation
» payload disturbances
» forced excitation
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Control Challenges

» Robustness to uncertainties:
» umbilical properties
» structural flexibility
» mass and inertia variations
» sensor & actuator dynamics

Low Gain &/or
Low Bandwidth

» Performance:
» base motion attenuation
» payload disturbances
» forced excitation

High Gain

High Bandwidth
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Base acceleration = 1.6 sin(0.01 hz*t)+16 sin(0.1 hz*t)+160 sin(1 hz*t)+1600 sin(10 hz*t)+16000 sin(100 hz*t)

g-LIMIT 6DOF, Acceleration Time Response (X-axis)
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Microgravity Vibration Isolation Systems 
may require more advanced control technology

• Multivariable coupling between sensor-actuator pairs

• Complex and uncertain structural dynamics

• Considerable variation in payload properties

• Control / structure interaction
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Classical Control: 
• Well developed / mature theory

Modern Control:
• Multivariable, linear, uncertain dynamic systems

• Distinct set of analysis and design tools

Intelligent Adaptive Control:
• Autonomous adaptation

• Minimal sustaining engineering

• Robust performance
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